Poisson process (with probability review)
In this note, we will consider an important random process called poisson process. This process is a popular model for customer arrivals or calls requested to telephone systems.

We start by modeling Poisson Process as a random arrangement of "marks" (denoted by " x^{*}) on the time line. These marks may indicate the time that customers arrive or the time that call requests are made.

We will focus on one kind of Poisson process:
homogeneous Poisson process
From now on, when we say "poisson process", what we mean is "homogeneous Poisson process".

The first property of poisson process that you should remember is that there is only one parameter for Poisson process. This parameter is the rate or intensity of arrivals (the average number of arrivals per unit time).
we use λ to denote this parameter.
If λ is a constant, the poisson process is homogeneous.

If λ is a function of time, say $\lambda(t)$, the Poisson process is non-homogeneous.

Our λ is constant because we focus on homogeneous Poisson process.
So, how can this control the Poisson Process? The key idea is that the Poisson process (PP) is as random/unstructured as a process can be. Therefore, if we consider many nonoverlapping intervals on the time-line shown below,

and count the number of arrivals in these inter vals.

Then, the numbers N_{1}, N_{2}, N_{3} should be independent; that is knowing the value of N_{1} does not tell us anything at all about what N_{2} and N_{3} will be. This is what we are going to take as a vague definition of the "complete randomness" of the Poisson process.

So now, we have one more property of PP:
The number of arrivals in non-overlapping intervals are independent.

By saying something are independent, of course, we mean it in terms of probability. Note that the numbers $\mathrm{N}_{2}, \mathrm{~N}_{2}, \mathrm{~N}_{3}$ above are random. Because they are counting the number of arrivals, we know that they can be any nonnegative integers:

$$
0,1,2,3, \ldots \ldots
$$

Because we don't know their exact values we

Because we don't know their exact values, we describe them via the likelihood or probability that they will take one of these values. For example, for N_{1}, we describe it by

$$
P\left[N_{1}=0\right], P\left[N_{1}=1\right], P\left[N_{1}=2\right], \ldots .
$$

where
$P\left[N_{1}=k\right]$ is the probability that N_{1} takes the value k.

The above notation is a bit long. So, we define

$$
P_{N_{1}}(k)=P\left[N_{1}=k\right] \text {. }
$$

This $P_{N_{1}}(\cdot)$ is then a function of k which tells the probability that N_{1} will take a particular value $K_{\text {, }}$ We call $P_{N_{1}}$ the probability mass function ($\rho m f$) of N_{1}

At this point, we don't know much about $P_{N_{1}}(k)$ except that they are between 0 and 1 and the sum

$$
\sum^{\infty} P_{N_{1}}(k)=1
$$

These two are the ne cessary and sufficient properties of any port.
When we say that N_{1} and N_{2} are independent, it means that

$$
P\left[N_{1}=k \quad \text { and } \quad N_{2}=m\right]
$$

(which is the probability that $N_{1}=k$ and $N_{2}=m$) canbe written as the product

$$
P_{N_{1}}(k) \times P_{N_{2}}(m)
$$

Do we know anything else about N_{1}, N_{2}, N_{3} ?

What about the λ ? Can we connect λ to N_{1}, N_{2}, N_{3} ?

Recall that λ is the average number of arrival per unit time.

So, if $\lambda=5$ arrivals/hour then we expect that N_{1}, N_{2}, N_{3} should statistically agree with this λ. How?
Let's first be more specific about the time duration of the intervals that we have earlier. suppose their lengths are T_{1}, T_{2}, T_{3} respectively:

Then, you should expect that

$$
\begin{aligned}
& \mathbb{E} N_{1}=\lambda T_{1} \\
& \mathbb{E} N_{2}=\lambda T_{2} \\
& \mathbb{E} N_{3}=\lambda T_{3}
\end{aligned}
$$

(average)
Recall that $I E N_{1}$ is the expectation of the random variable N_{1}.

$$
\mathbb{E} N_{1}=\sum_{k} k \times P\left[N_{1}=k\right] .
$$

"value" weighted by "trequercy of occurrence"
For example, suppose $\lambda=5$ arrivals/ hour and

$$
T_{1}=2 \text { hour. }
$$

Then you would get about $\lambda \times T_{1}=10$ arrivals.
during the first - interval. Of coupe, the number of arrivals is random. So, this number 10 is an average or the expected number, not the actual value.

In conclusion we now know more about PP. For any interval of length T, the expected number of arrivals in this interval is given by

$$
\mathbb{E} N=\lambda T .
$$

The next key idea is to consider a small interval. Imagine dividing a time interval of length T into n equal slots.

Then each slot would be a time interval of duration $\frac{T}{n}$.
If $T=20 \mathrm{hr}$ and $n=10,000$, then each small interval would have length

$$
\frac{I}{n}=\frac{20}{10,000}=0.002 \text { hour. }
$$

Why do we consider small interval?
The key is that as the interval becomes very small, then it is extremely unlikely that there will be more than 1 arrivals during this small amout of time!
The above statement is more accurate as we increase the value n which decreses the length of each small interval even further! What we are doing here is to approximate a
continuous-time process by a discrete-time process.
(You also do this when you plot a graph of any function $f(x)$. You evaluate the values of the function for many values of $s e$ where the o^{e} are close enough such that nothing surprising can happen in between.

If we want to be move vigorous, we would have to bound the error from such approximation, and show that the error disappear as $n \rightarrow \infty$. I will not do that here.

What do we gain by considering discrete-tine approximation?

When the interval is small enough, we can assume that at most 1 arrival occurs.

So now let N_{1} bervivals in slot 1

| N_{2} be | | |
| :--- | :--- | :--- | :--- |
| N_{3} be | \sim | 2 |

and so on as shown below:

Then, the N_{i} are all Bernoulli random variable! (This is because they can only be 0 and 1.)

In which case, the poof for the N_{i} reduces to only two values
to only two values

$$
P\left[N_{i}=0\right] \text { and } P\left[N_{i}=1\right]
$$

We also know that the average number of arrivals should be

$$
E N_{i}=\lambda \times \underbrace{\frac{T}{n}}_{\sum_{\text {length }}^{n}}
$$

So, all N_{i} are Bernoulli riv. with the same average!! Also, theyare all independent because they come from non -overlapping intervals.
For Bernoulli r.v. X, the are rage is

$$
\begin{aligned}
\mathbb{E} X & =O \times P[x=0]+1 \times P[X=1] \\
& =P[x=1]
\end{aligned}
$$

We use $P_{0}=P[x=0]$ and $P_{1}=P[x=1]$ to simplify the notation for Bernoulli r.V.
Hence,

$$
\mathbb{E} X=p_{1}
$$

Of course, we should also know that $p_{0}+p_{1}=1$. In other words, if we know IEX of a Bernoulli random variable, we also know its pmf:

$$
\begin{aligned}
& P_{1}=P[x=1]=\mathbb{E} X \\
& P_{0}=P[X=0]=1-\mathbb{E} X .
\end{aligned}
$$

For our discrete-tire approx. of $P P$, we now know that all of the N_{1}, N_{2}, \ldots have the same expectation

$$
\mathbb{E} N_{1}=\mathbb{E} N_{2}=\mathbb{E} N_{3}=\cdots=\lambda \frac{T}{n}
$$

For $\lambda=5, T=20, n=10,000$

$$
\lambda \frac{T}{n}=0.01 \text { arrival. }
$$

So, the pmfis of all N_{v}, N_{2}, \ldots are all the same!!
They are governed by

$$
p_{1}=\lambda \frac{T}{n} \text { and } p_{0}=1-\lambda \frac{T}{n}
$$

The probability
that there will
be an arrival
in the small interval
We say that $N_{1}, N_{2}, N_{3}, \ldots$ are i.i.d.
(independent and identically distributed)
At this point, you can use MATLAB to generate a PP using this discrete time approx.
First, we fix the end time Tor the simulation.

$$
\text { (ex. } T=20 \mathrm{hr} .)
$$

Then, we divide T into n slots

$$
(\text { ex. } n=10,000)
$$

For each slot, only two cases can happen:

$$
1 \text { arrival }
$$

or no arrival

So, generate Bernoulli riv. for each slot with

$$
p_{1}=\lambda \times \frac{T}{n} \quad(\text { if } \lambda=5 \text { arivals } / \mathrm{hr} \text {, }
$$

$$
\text { then } p_{1}=0.01 \text {) }
$$

To do this for 10,000 slots at the same time, we con use

$$
\operatorname{rand}(1, m)<p_{1}
$$

or
binornd ($1, p_{1}, 1, n$)

